A Variant of EFICA Algorithm with Adaptive Parametric Density Estimator
نویسندگان
چکیده
FastICA is a popular method for Independent Component Analysis used for separation of linearly mixed independent sources. The separation proceeds through optimization of a contrast function that is based on kurtosis or other entropy approximations using a nonlinear function. The EFICA algorithm is a recently proposed version of this algorithm that is asymptotically efficient when all source distributions are from the Generalized Gaussian family. It is known that the optimal nonlinearity for entropy estimation is the score function of the source distribution. For its evaluation the knowledge of the probability density function (pdf) of the source signals is necessary. Because these pdfs are unknown, the EFICA algorithm assumes that the distribution is Generalized Gaussian Distribution, calculates its parameter α for each source and selects one nonlinearity from the available set for fine tuning of the sources. This paper proposes to modify the EFICA algorithm by parametric estimation of the real score function, which is subsequently used as the contrast function in fine tuning iterations. The algorithm is tested on artificial data; the results are compared to original EFICA, FastICA and JADE.
منابع مشابه
Two-step Smoothing Estimation of the Time-variant Parameter with Application to Temperature Data
‎In this article‎, ‎we develop two nonparametric smoothing estimators for parameter of a time-variant parametric model‎. ‎This parameter can be from any parametric family or from any parametric or semi-parametric regression model‎. ‎Estimation is based on a two-step procedure‎, ‎in which we first get the raw estimate of the parameter at a set of disjoint time...
متن کاملDesign of an Adaptive Fuzzy Estimator for Force/Position Tracking in Robot Manipulators
This paper presents a stable new algorithm for force/position control in robot manipulators. In this algorithm, position vectors are measured by sensors and then used in the control law. Since using force sensor has some issues such as high costs and technical problems, an approach is presented to overcome these issues. In this respect, force sensor is replaced by an adaptive fuzzy estimator to...
متن کاملDiscrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...
متن کاملAsymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملA Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007